### **Cosmology: Simulation Frontiers**



Simulation Volume + Dynamic Range

Salman Habib, Snowmass CompF2, Aug 10, 2020

# 'Big(ish) Data' Meets Supercomputing

Supercomputer simulation campaigns

Weeks per simulation!

Statistics +
machine learning +
optimization
methods

Emulator based on Gaussian process interpolation in high-dimensional spaces

sub-milliseconds!



Mapping the sky with multiple survey instruments

Extraction of summary statistics from survey sky maps

Observations: Statistical error bars very small, systematics dominate

## **Computational Cosmology Challenges**

#### **Next-Generation System Architecture**

- Complexity at the node level (heterogeneity, accelerators, —)
- Multi-level memory hierarchy (limited DRAM/core) including NVRAM
- Skewed compute/communication balance ('weak' networks PCIE, IB)
- Programming models, portability

### **Improved Physics**

- More accurate simulations for known physics (e.g., neutrinos, radiative transfer)
- Higher fidelity phenomenological inputs (e.g., galaxy formation)

### **Analysis/Workflow Complexity**

- Realistic forward modeling of observations
- Data-intensive computational challenges
- Al/ML-based inverse problem treatments